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Abstract
Recent works have characterized the function-space inductive bias of infinite-width bounded-

norm single-hidden-layer neural networks as a kind of bounded-variation-type space. This novel
neural network Banach space encompasses many classical multivariate function spaces, including
certain Sobolev spaces and the spectral Barron spaces. Notably, this Banach space also includes
functions that exhibit less classical regularity, such as those that only vary in a few directions.
On bounded domains, it is well-established that the Gaussian reproducing kernel Hilbert space
(RKHS) strictly embeds into this Banach space, demonstrating a clear gap between the Gaussian
RKHS and the neural network Banach space. It turns out that when investigating these spaces on
unbounded domains, e.g., all of Rd, the story is fundamentally different. We establish the following
fundamental result: Certain functions that lie in the Gaussian RKHS have infinite norm in the neural
network Banach space. This provides a nontrivial gap between kernel methods and neural networks
by exhibiting functions that kernel methods easily represent, whereas neural networks cannot.

1. Introduction

In supervised learning, we observe samples with corresponding labels, which may represent classes
or continuous values. Our primary objective is to construct a function f : Rd → R based on these
observations that can accurately predict labels for new, unseen data points. Traditionally, reproduc-
ing kernel Hilbert spaces (RKHS) have provided a principled framework for this task, offering both
theoretical guarantees and practical algorithms. Their power stems from the representer theorem,
which ensures that optimal solutions can be expressed as combinations of kernel functions centered
at the training points.

However, the landscape of machine learning has evolved significantly with the emergence of
neural networks, which have demonstrated remarkable success across diverse applications over ker-
nel methods. The simplest neural architecture—the single-hidden layer network—builds upon the
concept of ridge functions, which map Rd → R via the form x 7→ σ(w⊤x), where σ : R → R
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is a univariate function and w ∈ Rd \ {0}. In practice, these networks combine multiple ridge
functions:

x 7→
K∑
k=1

vk σ(w
T
k x− bk), (1)

where K represents the network width, vk ∈ R and wk ∈ Rd \ {0} are weights, and bk ∈ R
are biases. While RKHS methods suffer from the curse of dimensionality, neural networks can
overcome it by learning effective low-dimensional representations (Ghorbani et al., 2021b; von
Luxburg and Bousquet, 2004).

A fundamental question is to compare the approximation capabilities of neural networks with
those of RKHS corresponding to different kernels. For example, Mei et al. (2016) showed that if
the target function is a single neuron, neural networks can learn efficiently using roughly d log d
samples, whereas the corresponding RKHS requires a sample size that grows polynomially in the
dimension d (see also Yehudai and Shamir (2019); Ghorbani et al. (2019)).

Recent work (Parhi and Nowak, 2021, 2023a) has studied the Banach-space optimality of single-
hidden-layer (shallow ReLU) networks over both bounded and unbounded domains Ω ⊆ Rd. There,
the authors established a representer theorem which demonstrates that solutions to data-fitting prob-
lems in these networks naturally reside in a kind of bounded variation space, referred to as the
second-order Radon bounded variation space RBV2(Ω). These spaces, in turn, contain several
classical multivariate function spaces, including certain Sobolev spaces as well as certain spectral
Barron spaces (Barron, 1993). For instance, Parhi and Nowak (2023a) have shown that the Sobolev
space Hd+1(Ω) embeds into RBV2(Ω) for any bounded Lipschitz domain Ω ⊂ Rd. Moreover, on
any bounded Lipschitz domain Ω ⊂ Rd, the Gaussian reproducing kernel Hilbert space HGauss(Ω)
is known to embed into the Sobolev space Hs(Ω) for all s > 0 (see Corollary 4.36 of Steinwart and
Christmann (2008)). This observation appears to highlight limitations of Gaussian kernel machines
when compared to neural networks on bounded domains. Consequently, a natural question arises.

Are Gaussian kernel machines restrictive in approximating general functions?

Conversely, one may also ask the following question.

To what extent can we approximate functions using shallow neural networks?

To that end, Ghorbani et al. (2021a) demonstrated that the gap between neural network approxi-
mations and kernel methods can be narrowed when the intrinsic dimensionality of the target function
is well captured by the covariates of the data. In this paper, we take a different perspective: While
the Gaussian RKHS may seem rather limited in a bounded domain, we show that on unbounded
domains, in particular, on Rd with fixed dimension d, there exist functions in HGauss(Rd) with
unbounded RBV2(Rd)-norm.

The key idea behind our analysis is that, in the regime of kernel machines with infinite centers
on Rd, there exist functions of the form f =

∑∞
i=1 αik(xi, ·) with bounded RKHS norm, but

the infinite sequence {αi} has an unbounded ℓ1-norm (see Example 2 in Section 3). This fact
can be exploited to design a sequence of functions {fn} whose RBV2(Rd)-norm is diverging as
n → ∞ (see Theorem 7 in Section 5). An important step in this study is we compute an explicit
form for RBV2(Rd)-norm of a Gaussian kernel machine, and further simplify the form using well-
known Hermite polynomials. This form provides an interpretable characterization of these kernel
machines, which is of independent interest for future studies.
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2. Related Work

Approximability with Kernel Methods Bach (2017) studied various classes of single-/multi-
index models with low intrinsic dimension and bounded RBV2(Rd)-norm. In contrast, Ghorbani
et al. (2019) showed that if the covariates have the same dimension as the low intrinsic dimension
of the target function, kernel and neural network approximations can be competitive. Empirically,
some works show that the curse of dimensionality with kernel methods can be handled with an ap-
propriate choice of dataset-specific kernels (Arora et al., 2019; Novak et al., 2018; Shankar et al.,
2020) or mirroring neural network training dynamics closely to kernel methods (Mei et al., 2018;
Sirignano and Spiliopoulos, 2020; Rotskoff and Vanden-Eijnden, 2022; Chizat and Bach, 2018).
Furthermore, Petrini et al. (2023) showed that compared to a network that learns sparse represen-
tations while the target function is constant or smooth along certain directions of the input space,
lazy training (via random feature kernel or the NTK) yields better performance. But a wide body
of work has also shown a gap in approximation with neural networks capturing a richer and more
nuanced class of functions compared to kernel methods (see (Allen-Zhu and Li, 2019; Mei et al.,
2018; Yehudai and Shamir, 2019; Ghorbani et al., 2019)). In our work, we show that while Gaus-
sian RKHS is embedded within neural networks in bounded domains, in the unbounded regime
there exists a non-trivial gap between HGauss(Rd) and RBV2(Rd).

Function Spaces of Shallow Networks The function space RBV2(Ω) naturally characterizes the
function approximation and representation capabilities of shallow ReLU neural networks (Ongie
et al., 2020). Parhi and Nowak (2021) established a representer theorem, showing that solutions
to variational problems over RBV2(Ω) correspond to single-hidden layer ReLU networks with
weight decay regularization. Unlike RKHSs RBV2(Ω) can efficiently represent functions with
a low-dimensional structure. Moreover, neural networks trained with weight decay achieve near-
minimax optimal estimation rates for functions in RBV2(Ω), while kernel methods provably cannot
(Parhi and Nowak, 2023a). This suggests that on bounded domains, RKHSs are quite restrictive,
while RBV2(Ω) provides a more expressive framework. For further details see (Ongie et al., 2020;
Parhi and Nowak, 2021, 2022, 2023a,b; Bartolucci et al., 2023; Parhi and Unser, 2025)

Embeddings of RKHSs and RBV2(Ω) For any bounded Lipshitz domain Ω ⊆ Rd, it is well-
known that the Sobolev space Hs(Ω) is (equivalent to) an RKHS if and only if s > d/2. For
example, the Laplace and Matérn kernels are associated with Sobolev RKHSs (see, e.g., Kanagawa
et al., 2018, Example 2.6). In contrast, Zhou (2003) and Steinwart and Christmann (cf., 2008,
Corollary 4.36) showed that the Gaussian RKHS HGauss(Ω) is contained in HGauss(Ω) ⊂ Hs(Ω)
for all s ≥ 0. Recent work has further demonstrated that the RKHSs of typical neural tangent
kernel (NTK) and neural network Gaussian process (NNGP) kernels for the ReLU activation func-
tion are equivalent to the Sobolev spaces H(d+1)/2(Sd) and H(d+3)/2(Sd), respectively (Bietti and
Bach, 2021; Chen and Xu, 2021). Steinwart et al. (2009) has shown that an optimal learning rates
in Sobolev RKHSs can be achieved by cross-validating the regularization parameter. On another
front, embedding properties relating Sobolev spaces and the second-order Radond-domain bounded
variation space has been explored. For example, Ongie et al. (2020) showed that W d+1(L1(Rd))
embeds in RBV2(Rd). More recently, Mao et al. (2024) established a sharp bound by proving that
W s(Lp(Ω)) with s ≥ 2+ (d+1)/2 for p ≥ 2 embeds in RBV2(Ω) for bounded domains Ω ⊂ Rd.
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3. Problem Setup and Preliminaries

3.1. Gaussian Reproducing Kernel Hilbert Space

We begin by defining a reproducing kernel Hilbert space (RKHS) associated with a Gaussian kernel
on an infinite domain. For a given positive definite Mahalanobis matrix M ∈ Sym+(Rd×d), we
define the Gaussian kernel kM : Rd × Rd → R as

kM(x,y) = exp

(
−
∥x− y∥2M

2σ2

)
, (2)

where σ > 0 is a fixed scale parameter and the Mahalanobis distance is defined as

∥x− y∥2M = (x− y)TM(x− y). (3)

The corresponding RKHS H is defined as the closure1 of the linear span of kernel functions:

H := cl

({
f : X → R

∣∣∣∣n ∈ N, f(·) =
n∑

i=1

αi · kM(xi, ·), xi ∈ Rd

})
, (4)

where the (squared) RKHS norm ∥ · ∥2H of a kernel machine f ∈ H is defined as ∥f∥2H =∑
i,j αiαjkM (xi,xj). Alternately, we can write ∥f∥2H = αTKα where K = (kM(xi,xj))i,j

is an n× n matrix.

3.2. Separated Sets and Function Spaces

For our analysis, we introduce two key definitions of separated sets that play a crucial role in our
theoretical development.

Definition 1 ((β, δ)-separated set) For any given scalar δ > 0 and a vector β ∈ Rd, a (β, δ)-
separated subset of size n ∈ N is defined as

Cn(β, δ) :=
{
{x1, . . . ,xn}

∣∣∣ ∀ i, j, |βTxi − βTxj | ≥ δ
}
. (5)

This could be further generalized to the notion

Definition 2 ((β, δ, η)-separated set) For any given scalars δ, η > 0 and a vector β ∈ Rd a
(β, δ, η)-separated subset of size n ∈ N is defined as

Cn(β, δ, η) :=
{
{x1, . . . ,xn}

∣∣∣ ∀ i, j,β′ ∈ Rd s.t. βTβ′ ≥ η ∥β∥
∥∥β′∥∥ , |β′Txi − β′Txj | ≥ δ

}
.

(6)

Example 1 Let β = (1, 0, . . . , 0). For all η0 ≥ η, pick β′ =
(
η0,
√

1− η20, 0, . . . , 0
)

so that
∥β′∥ = 1 and βTβ′ = η0 ≥ η. Now define

xi := (i− 1) δ β′, i = 1, . . . , n. (7)

For i ̸= j, we have ∣∣β′Txi − β′Txj

∣∣ = |(i− j)| δ ∥β′∥2 = |i− j| δ ≥ δ. (8)

Hence, {x1, . . . ,xn} is in (β, δ, η)-separated subset of size n.

1. With respect to the norm topology on H.
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Definition 3 (Unbounded Combinations) For a kernel machine f ∈ H with representation f =∑∞
i=1 αik(xi, ·), we say the coefficient vector α = (αi)

∞
i=1 is unbounded with respect to f if

∥α∥ℓ1 =
∑∞

i=1 |αi| = ∞.

Example 2 Consider a kernel machine f ∈ H corresponding to the combination α = (an) defined
by an = 1

n for each n ∈ N and a sequence of centers (xn) ⊂ Rd such that for all i, j, ∥xi − xj∥ ≥
|i − j|δ for some fixed scalar δ > 0. For this construction, Gaussian RKHS norm αTKα =∑∞

i=1

∑∞
j=1 αiαjk(xi,xj) < ∞, but ∥α∥ℓ1 is unbounded.

We provide the proof of the statement in the example above in Appendix D.

3.3. Probabilist’s Hermite Polynomials

Probabilist’s Hermite polynomials (Szegő, 1975), denoted by Hed(z) : R → R, are defined by the
generating function

exp
(
zt− t2

2

)
=

∞∑
d=0

Hed(z)
td

d!
, (9)

and they are orthogonal with respect to the standard normal density∫ ∞

−∞
Hed(z)Hed′(z)

1√
2π

exp
(
−z2

2

)
dz = d! δdd′ , (10)

where δdd′ is the Kronecker delta. We use the notation Hd to denote the polynomial unless stated
otherwise.

3.4. Radon Transform and the Second-Order Radon-Domain Bounded Variation Space

Radon Transform For a function f : Rd → R, its Radon transform R{f} is defined by

R{f}(β, t) =
∫
{x∈Rd:βTx=t}

f(x) ds(x), (11)

where u ∈ Sd−1, t ∈ R, and ds(x) is the (d− 1)-dimensional Lebesgue measure on the hyperplane

Radon Bounded Variation Space We define the second-order Radon bounded variation space
RBV2(Rd) as:

RBV2(Rd) =

f : Rd → R is measurable :
RTV2(f) < ∞,

ess sup
x∈Rd

|f(x)|(1 + ∥x∥)−1 < ∞

 , (12)

where the second-order Radon total variation norm RTV2(f) is a seminorm defined by

RTV2(f) = cd∥∂2
t Λ

d−1Rf∥M(Sd−1×R). (13)

Here, Λd−1 = (−∂2
t )

d−1
2 , c−1

d = 2(2π)d−1 is a dimension-dependent constant, and ∥ · ∥M(Sd−1×R)
denotes the total variation norm in the sense of measures supported on Sd−1×R. Note that all oper-
ators must be understood in the distributional sense (see Parhi and Nowak (2021); Parhi and Unser
(2024) for more details). The seminorm in Eq. (13) exactly coincides with the representational cost
of a function realized as a single-hidden-layer bounded-norm infinite-width network and coincides
with the R-norm introduced by Ongie et al. (2020).
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4. RTV2 of a Kernel Machine

In this section, we study the RTV2 of kernel machines in the RKHS H. We show that one can
write an explicit computable form for the case when the input dimension d is odd. Consider the
underlying matrix M ≻ 0 for the Gaussian kernel kM has the following Cholesky decomposition

M = LLT. (14)

Since M is full rank and is in Sym+(Rd×d) this decomposition is unique. With this we state the
following result on RTV2(f) of a kernel machine f ∈ H(Rd) with the proof in Appendix A.

Theorem 4 Assume that the input dimension d is odd. For a kernel machine f ∈ H(Rd) of the
form

f(·) =
k∑

i=1

αikM(xi, ·), (15)

the RTV2 of f is given by

RTV2(f) =
1

|detL|
1√
2π

∫
Sd−1

1

∥L−Tβ∥

∫
R

∣∣∣∣∣
k∑

i=1

αi

(
∂d+1

∂td+1
exp

(
−(t− xT

i β)
2

2 ∥L−Tβ∥2

))∣∣∣∣∣ dtdβ,
(16)

where we have used the decomposition M = LTL. Furthermore, this can be extended to the case
when f has a representation with infinite kernel functions by taking limits.

Proof Outline The proof proceeds in three main steps: First, we leverage the factorization M =
LTL to express the Gaussian kernel for a single center x0 as

g(x) =
1

(2π)d/2
exp
(
−|L(x− x0)|2

2

)
. (17)

Next, we compute its Fourier transform using the change-of-variables formula to obtain

ĝ(ω) = exp
(
−ixT

0ω
) 1

|detL|
exp
(
−|L−Tω|2

2

)
. (18)

Finally, we apply the Fourier slice theorem (Ramm and Katsevich, 1996) to connect the one-
dimensional Fourier transform of R{g}(β, t) (with respect to t) with d-variate Fourier transform
evaluated on one slice: ĝ(ωβ). By inverting this transform, we derive the explicit expression for
R{g}(β, t). For odd dimensions d, the second-order Radon total variation of smooth functions is
characterized by the L1-norm of the (d + 1)th t-derivative of R{g}(β, t) (cf., Ongie et al., 2020;
Parhi and Nowak, 2021). The result then readily extends to any finite kernel machine

f(·) =
k∑

i=1

αikM(xi, ·) (19)

through the linearity of both the Fourier and Radon transforms.

6
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4.1. RTV2 as an Expression of Hermite Polynomials

In Section 3, we discussed Hermite polynomials (probabilist’s). In the following, we show how
Theorem 4 can be rewritten in terms of Hermite polynomials. In the next section, we study certain
useful property of this expression to show the construction of a diverging RTV2 sequence of kernel
machines.

First, consider the the case of a g ∈ H defined on one center x0 ∈ Rd. Using Theorem 4 we
can write the RTV2-norm of the kernel machine g for one center x0 as

RTV2(g) =
1

|detL|
1√
2π

∫
Sd−1

1

∥L−Tβ∥

∫
R

∣∣∣∣∣
(

∂d+1

∂td+1
exp

(
−(t− xT

0β)
2

2 ∥L−Tβ∥2

))∣∣∣∣∣ dt dβ. (20)

First, consider the inner integral in RTV2(g) and denote it as

I(β) :=

∫
R

∣∣∣∣( ∂d+1

∂td+1
exp

(
−(t− xT

0β)
2

2σ2

))∣∣∣∣ dt, (21)

where we use σ =
∥∥L−Tβ

∥∥.

Now, denote µ := x0β. Then, we note that the (d+1)-th derivative of exp
(
− (t−µ)2

2σ2

)
is related

to the (d+ 1)-th Hermite polynomial Hd+1 as follows:

∂d+1

∂td+1
exp

(
−(t− µ)2

2σ2

)
= (−1)d+1σ−(d+1)Hd+1

(
t− µ

σ

)
exp

(
−(t− µ)2

2σ2

)
. (22)

Now, let u = t−µ
σ . Thus, du = 1

σdt. Substituting this transformation to I(β) gives

I(β) =

∫
R

∣∣∣∣( ∂d+1

∂td+1
exp

(
−(t− µ)2

2σ2

))∣∣∣∣dt = ∫
R

∣∣∣∣(−1)d+1σ−(d+1)Hd+1(u)e
−u2

2

∣∣∣∣σdu (23)

= σ−d

∫
R

∣∣∣∣Hd+1(u)e
−u2

2

∣∣∣∣du. (24)

We can rewrite I(β) as

I(β) = σ−d

∫
R

∣∣∣∣Hd+1(u)e
−u2

2

∣∣∣∣ du = σ−dCd, (25)

where Cd :=
∫
R

∣∣∣∣Hd+1(u)e
−u2

2

∣∣∣∣ du. In Section 5, we bound this quantity to achieve certain decay

of an infinite sum.
Replacing the computation in Eq. (24) to Eq. (20) gives

RTV2(g) =
Cd

|detL|
1√
2π

∫
Sd−1

1

∥L−Tβ∥d+1
dβ. (26)

Thus, this shows that the expression of RTV2(g) in Theorem 4 can be simplified in terms of Her-
mite polynomials.

In the following we extend this for k > 1 with the proof deferred to Appendix B.

7
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(0,0)
η

β

β′
x1

x2

x3
x4

δ1 δ12 δ23

Figure 1: Illustration of an (β, δ, η)-separated set and a sequence (x1,x2,x3,x4) that satisfy the
requirements of the definition. The distances δ1, δ12, δ23 are at least δ apart.

Lemma 5 For a kernel machine f ∈ H in the space of Gaussian RKHS. If f has the following
representation

f(·) =
k∑

i=1

αikM(xi, ·) (27)

for a center set {x1,x2, . . . ,xk}. Then, we can write

RTV2(f) =
1

|detL|
√
2π

∫
Sd−1

Iinner(β)

σd+1
dβ, (28)

Iinner(β) :=

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy, (29)

where σ = ∥L−Tβ∥ and

∆i =
xT
1β − xT

i β

∥L−Tβ∥
for i = 2, 3, . . . , k, (30)

and ∆1 = 0.

5. A Sequence of Kernel Machines with Diverging RTV2

In this section, we construct a sequence of kernel machines
{
fn ∈ H(Rd)

}
such that their RTV2

diverges. First, we state some useful assumptions on the probabilist’s Hermite polynomial which
are easy to verify to hold in general (but surely in odd dimension d).

Assumption 1 (δ-peak) Fix a dimension d. For a given Hermite polynomial Hd+1, we call an
interval [−δ, δ] a region of δ-peak if:

1. ∂Hd+1(y)e
− y2

2

∂y < 0 for all y > δ

2. ∂Hd+1(y)e
− y2

2

∂y > 0 for all y < −δ

8
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Due to exponential decay of the product Hd+1(y)e
− y2

2 , for any odd dimension d note that

∂Hd+1(y)e
− y2

2

∂y
= (H ′

d+1(y)− yHd+1(y))e
−y2/2, (31)

where −yHd+1(y) is a polynomial with odd dimension with negative highest term and this implies

there exists a δ-peak. Now, we state a trivial observation on the absolute integral of Hd+1 (y) e
− y2

2 .

Assumption 2 (ϵ-safe) We say a constant ϵ > 0 is ϵ-safe if∫
[−ϵ,ϵ]

∣∣∣∣Hd+1 (y) e
− y2

2

∣∣∣∣ dy > 0. (32)

Since Hd+1 is non-zero polynomial this holds trivially for any ϵ > 0. Furthermore, the integral is
increasing with the size of an ϵ-interval. With this, we state a useful result on the convergence of a

series of evaluations of Hd+1 (y) e
− y2

2 on distinct points y ∈ R. The proof appears in Appendix C.

Lemma 6 Let d ≥ 0 be fixed and let Hd+1(y) denote the Hermite polynomial of degree d + 1.
Then for any constant ρ > 0, there exists a constant δ0 > 0 (depending only on d) such that for
every δ ≥ δ0 we have

∞∑
j=2

∣∣∣Hd+1

(
jδ
)∣∣∣ e− (jδ)2

2 <
ρ

4
. (33)

5.1. Construction of a Diverging Sequence

In Section 3, we defined the notions of (β, δ, η)-separated sets of size n ∈ N. Let (x1,x2, . . . ,xn)
be a sequence in this set. Intuitively, any two centers in the sequence are at least δ apart when
projected onto any direction β′ such that βTβ′ ≥ ∥β∥ ∥β′∥ η (see Fig. 1 for an illustration). Now,
note that in Lemma 5, we provided an alternate representation of the RTV2(f) of a function as
shown in Theorem 4, specifically the inner integral for each β ∈ Sd−1 has the form:

Iinner(β) :=

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy, (34)

where each ∆i = xT
1β−xT

i β (ignoring the normalization). If the projections xT
i β are far apart on

the real line R, noting the absolute decay in the values of Hd+1 (y) e
− y2

2 outside the region of δ-
peak as asserted by Assumption 1, we can quantify and control contributions of terms corresponding
to j ̸= i in the inner integral.

Now, the property holds over a non-trivial cone K(β) :=
{
β′ ∈ Sd−1 |βTβ′ ≥ η

}
with non-

zero volume. Now, note in Eq. (28), which involves the following integral∫
Sd−1

Iinner(β)

σd+1
dβ (35)

is non-trivially positive. Thus, we show along any direction β in the cone, Iinner diverges as k grows
if the kernel machine f is defined for a sequence of centers from the (β, δ, η)-separated set.

9
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Now, we state the main theorem of the work. For ease of analysis we assume that the largest
eigenvalue of L−1 is upper bounded by 1 which can be easily replaced with appropriate rescaling
and choice of the parameters in the statement.

Theorem 7 (Diverging RTV2) Consider the Gaussian RKHS H(Rd) as defined in Eq. (4). As-
sume ϵ ∈ (0, 1/2] be a safe constant (see Assumption 2). Define

ρ :=

∫
[−ϵ,ϵ]

∣∣∣∣Hd+1 (y) e
− y2

2

∣∣∣∣ dy. (36)

Fix a unit vector β ∈ Rd, scalars η ≥
√
3
2 , and δ = 3max{ϵ, δ0(ρ), δ′} where δ0(ρ) is chosen as

per Lemma 6, and δ′(d) as per Assumption 1. Let X∞ = {x1,x2, . . .} ⊂ Rd be an infinite sequence
such that any subsequence Γn = {x1,x2, . . . ,xn} is in the (β, δ, η)-separated set of size n. Define
a function f ∈ H on X∞ that has a representation with an f -unbounded combination αf . Then,

RTV2({fn}) → ∞, (37)

as n → ∞.

Proof First, we rewrite Eq. (28) for the RTV2 of the function fk as follows

RTV2(fk) =
1

| detL|
√
2π

∫
Sd−1

1

σd+1

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy dβ, (38)

with the inner integral

Iinner(β) =

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy, (39)

where

∆1 = 0, ∆i =
a1 − ai

σ
=

xT
1β − xT

i β

∥L−Tβ∥
for i = 2, 3, . . . , k. (40)

First, define the cone K wrt β and η as stated in the theorem statement, i.e.,

K :=
{
β′ ∈ Sd−1

∣∣∣ β′Tβ ≥ η
}
. (41)

Note that the volume vol(K) > 0 implying that∫
Sd−1

1

σd+1
dβ ≥

∫
K

1

σd+1
dβ = (⋆). (42)

Note that M = LTL. We assume that the M is symmetric and PSD, implying that singular values
of L are exactly the square root of the eigenvalues of M, i.e.,

σi(L) =
√
|λi(M)|. (43)

10
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But, since L is invertible implying the singular values if L−1 are inverses to singular values of L,
i.e., σi(L−1) = 1

σi(L)
. Thus, we can rewrite Eq. (42) as

(⋆) =

∫
K

1

σmax(L−1)d+1
dβ

≥
∫
K
σmin(L)

d+1 dβ

=

∫
K
λmin(M)

(d+1)
2 dβ = λmin(M)

(d+1)
2 vol(K) > 0. (44)

Now, we will show for any β′ ∈ K, there is a non-trivial lower bound on Iinner(β
′). Note that by

definition, Γn is in the (β′, δ)-separated set.
Hence, for all i, j = 2, 3, . . .

|∆i −∆j | ≥ δ. (45)

Define the neighborhoods {Ni} for the safe constant ϵ as follows

Ni := [−∆i − ϵ,−∆i + ϵ] . (46)

Now, consider the integral on the neighborhood Ni:

∫
Ni

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy
≥
∫
Ni

∣∣∣∣αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣ dy − ∫
Ni

∣∣∣∣∣∣
k∑

j=1,j ̸=i

αj Hd+1 (y +∆j) e
−

(y+∆j)
2

2

∣∣∣∣∣∣ dy︸ ︷︷ ︸
=:θi

. (47)

The second line follows from the triangle inequality. Now, change of variable simplifies the first
equation as∫

Ni

∣∣∣∣αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣ dy ≥ |αi|
∫
[−ϵ,ϵ]

∣∣∣∣Hd+1 (y) e
− y2

2

∣∣∣∣ dy ≥ |αi|ρ. (48)

In the last equation, we used the definition of ρ.
Now, summing over each i = 1, 2, . . . k, we get

Iinner ≥
k∑

i=1

∫
Ni

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy ≥ ρ

k∑
i=1

|αi| −
k∑

i=1

θi. (49)

Now, we will show how to bound the sum
∑k

i=1 θi.

11
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Bounding θk: First note that, we can bound each θi as follows

θi =

∫
Ni

∣∣∣∣∣∣
k∑

j=1,j ̸=i

αj Hd+1 (y +∆j) e
−

(y+∆j)
2

2

∣∣∣∣∣∣ dy
≤

k∑
j=1,j ̸=i

∫
Ni

∣∣∣∣αj Hd+1 (y +∆j) e
−

(y+∆j)
2

2

∣∣∣∣ dy (50)

≤
k∑

j=1,j ̸=i

∫
[−ϵ,ϵ]

∣∣∣∣αj Hd+1 (−∆i + y +∆j) e
−

(−∆i+y+∆j)
2

2

∣∣∣∣ dy (51)

≤
k∑

j=1,j ̸=i

|αj |
∫
[−ϵ,ϵ]

∣∣∣∣Hd+1 (|i− j|δ) e−
(|i−j|δ)2

2

∣∣∣∣ dy (52)

≤ 2ϵ
k∑

j=1,j ̸=i

|αj | |Hd+1 (|i− j|δ)| e−
(|i−j|δ)2

2

≤
k∑

j=1,j ̸=i

|αj | |Hd+1 (|i− j|δ)| e−
(|i−j|δ)2

2 . (53)

Eq. (50) is a straight-forward application of triangle inequality. In Eq. (51), we simplify Eq. (50)
via change of variable. In Eq. (52), we use the assumption of δ-peak. To simplify −∆i+y+∆j for
a choice of y ∈ [−ϵ, ϵ], we assume that indices of the projections ∆i for i = 1, 2, . . . are arranged
in ascending order in their values on the real line. Since each consecutive projections are at least
δ apart, we can bound | − ∆i + y + ∆j | > (|i − j| − 1/3)δ. Since Hermite polynomials in even
dimension, i.e. d+ 1, are even∣∣∣∣Hd+1 (−∆i + y +∆j) e

−
(−∆i+y+∆j)

2

2

∣∣∣∣ ≤ ∣∣∣∣Hd+1 ((|i− j| − 2/3)δ) e−
((|i−j|−2/3)δ)2

2

∣∣∣∣ . (54)

For simplification, we have omitted the −(2/3)δ additive term in the equation above. Finally,
Eq. (53) follows as ϵ ≤ 1/2.

Summing over each i = 1, . . . , k

k∑
i=1

θk =

k∑
i=1

∫
Ni

∣∣∣∣∣∣
k∑

j=1,j ̸=i

αj Hd+1 (y +∆j) e
−

(y+∆j)
2

2

∣∣∣∣∣∣ dy
≤

k∑
i=1

k∑
j=1,j ̸=i

|αj | |Hd+1 (|i− j|δ)| e−
(|i−j|δ)2

2

≤ 2

 k∑
j=1

|Hd+1 (jδ)| e−
(jδ)2

2

 k∑
i=1

|αi|. (55)

Using Lemma 6, we can rewrite Eq. (49) as

Iinner ≥ ρ

k∑
i=1

|αi| − 2

 k∑
j=2

|Hd+1 (jδ)| e−
(jδ)2

2

 k∑
i=1

|αi| ≥
ρ

2

k∑
i=1

|αi|. (56)
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Now, note that using Eq. (42) and Eq. (44)

RTV2(fk) ≥
1

|detL|
√
2π

∫
K

1

σd+1

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy dβ
≥ 1

|detL|
√
2π

∫
K

1

σd+1

(
ρ

2

k∑
i=1

|αi|

)
dβ

≥
(

1

|detL|
√
2π

λmin(M)
(d+1)

2 vol(K)

)
·

(
ρ

2

k∑
i=1

|αi|

)
. (57)

Now, in the limiting case

lim
k→∞

RTV2(fk) ≥
(

1

|detL|
√
2π

λmin(M)
(d+1)

2 vol(K)

)
lim
k→∞

(
ρ

2

k∑
i=1

|αi|

)

=

(
1

|detL|
√
2π

λmin(M)
(d+1)

2 vol(K)

)
· ρ
2
∥αf∥ → ∞. (58)

Hence the claim of the theorem has been proven.

6. Conclusion

In this work, we showed that if we allow unbounded domains, there exist functions that cannot
be represented within RBV2(Rd), but can be represented within the Gaussian RKHS. This anal-
ysis reveals a nontrivial gap between kernel methods and neural networks by exhibiting functions
that kernel methods can represent, whereas neural networks cannot. On that note, this observation
motivates further investigation of what this gap entails in a learning setting. This observation also
motivates investigating if a similar gap exists between kernel methods and deep neural networks.
We leave the details to future work.
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Proof Let

g(x) =
1

(2π)d/2
exp

(
−
∥x− x0∥2M

2

)
. (59)

Also, define the 0 mean identity covariance Gaussian

g0(x) =
1

(2π)d/2
exp

(
−∥x∥2

2

)
. (60)

If we can write M = LTL, then we have that

∥x− x0∥2M = ∥L(x− x0)∥2 , (61)

in which case

g(x) =
1

(2π)d/2
exp

(
−∥Lx− Lx0∥2

2

)
. (62)

We have the Fourier transform

ĝ0(ω) = exp

(
−∥ω∥2

2

)
. (63)

We have the equality g(x) = g0(Lx−Lx0). Using the change of variables formula for the Fourier
transform, we have

ĝ(ω) = exp
(
−i(Lx0)

TL−Tω
) 1

|detL|
ĝ0(L

−Tω) (64)

= exp
(
−ixT

0L
TL−Tω

) 1

|detL|
exp

(
−
∥∥L−Tω

∥∥2
2

)
(65)

= exp
(
−ixT

0ω
) 1

|detL|
exp

(
−
∥∥L−Tω

∥∥2
2

)
. (66)

The Fourier slice theorem (Ramm and Katsevich, 1996) says that

F1{R{f}(β, ·)}(ω) = f̂(ωβ). (67)

If we evaluate ĝ at ω = ωβ in the Eq. (66), we find

ĝ(ωβ) = exp
(
−ixT

0 (ωβ)
) 1

|detL|
exp

(
−
∥∥L−T(ωβ)

∥∥2
2

)
(68)

= exp
(
−i(xT

0β)ω
) 1

|detL|
exp

(
−
|ω|2

∥∥L−Tβ
∥∥2

2

)
. (69)
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The 1D inverse Fourier transform of this is the Radon transform of g, i.e.,

R{g}(β, t) = 1

|detL|
1√
2π

1√
∥L−Tβ∥2

exp

(
−(t− xT

0β)
2

2 ∥L−Tβ∥2

)
. (70)

If d is odd, then the second-order Radon domain total variation is the L1-norm of (d+1) derivatives
in t of this quantity (see Equation (28) in Parhi and Nowak (2021)). That is

RTV2(g) =
1

|detL|
1√
2π

∫
Sd−1

∫
R

∣∣∣∣∣∣ 1√
∥L−Tβ∥2

(
∂d+1

∂td+1
exp

(
−(t− xT

0β)
2

2 ∥L−Tβ∥2

))∣∣∣∣∣∣ dt dβ (71)

=
1

|detL|
1√
2π

∫
Sd−1

1

∥L−Tβ∥

∫
R

∣∣∣∣∣
(

∂d+1

∂td+1
exp

(
−(t− xT

0β)
2

2 ∥L−Tβ∥2

))∣∣∣∣∣ dtdβ. (72)

This gives the stated expression on RTV2(f) for one center.

A.1. Multi-Center Computation

For a kernel machine with k > 1 centers, we can rewrite g as

g(x) =

k∑
i=1

1

(2π)d/2
αi · exp

(
−∥Lx− Lxi∥2

2

)
. (73)

Denote by gi(x) :=
1

(2π)d/2
exp

(
−∥Lx−Lxi∥2

2

)
for each center xi ∈ D.

Now, the Fourier transform of g can be written for the extended case, noting the linearity of the
transform,

ĝ(ω) =
k∑

i=1

ĝi(ω). (74)

This implies that

ĝ(ω) =
k∑

i=1

exp
(
−ixT

i ω
) 1

|detL|
exp

(
−
∥∥L−Tω

∥∥2
2

)
. (75)

Now, computing the inverse Fourier transform of ĝ wrt ω gives

R{g}(β, t) = 1

|detL|

k∑
i=1

αi
1√
2π

1√
∥L−Tβ∥2

exp

(
−(t− xT

i β)
2

2 ∥L−Tβ∥2

)
. (76)

As before the RTV2 of g, i.e. the second-order Radon domain total variation for odd values of d is
the L1-norm of (d+ 1) derivatives in t of this quantity. Thus,

RTV2(g) =
1

|detL|
1√
2π

∫
Sd−1

1

∥L−Tβ∥

∫
R

∣∣∣∣∣
k∑

i=1

αi

(
∂d+1

∂td+1
exp

(
−(t− xT

i β)
2

2 ∥L−Tβ∥2

))∣∣∣∣∣ dt dβ.
(77)

18



A GAP BETWEEN THE GAUSSIAN RKHS AND NEURAL NETWORKS

This expression can be extended to the case of kernel machines with infinite centers by taking
limits. In particular, it is guaranteed to be finite for the case when the ℓ1 norm of the coefficients α
is finite since ∣∣∣∣∣∑

i

αi

(
∂d+1

∂td+1
exp

(
−(t− xT

i β)
2

2 ∥L−Tβ∥2

))∣∣∣∣∣ ≤ C ·
∑
i

|αi|, (78)

where it is straightforward to show that ∂d+1

∂td+1 exp

(
− (t−xT

i β)
2

2∥L−Tβ∥2

)
is bounded by a universal constant

C > 0 for all choices of xi.

Appendix B. Change of Variables For Multiple Centers

In this Appendix, we provide the proof of Lemma 5.
Proof Previously, we computed the RTV2 of a general kernel machine as

RTV2(g) =
1

|detL|
1√
2π

∫
Sd−1

1

∥L−Tβ∥

∫
R

∣∣∣∣∣
k∑

i=1

αi

(
∂d+1

∂td+1
exp

(
−(t− xT

i β)
2

2 ∥L−Tβ∥2

))∣∣∣∣∣ dt dβ.
(79)

Now, we can rewrite the (d+ 1)-th derivative of the involved exponential as follows

∂d+1

∂td+1
exp

(
−(t− ai)

2

2σ2

)
= (−1)d+1σ−(d+1)Hd+1

(
t− ai
σ

)
exp

(
−(t− ai)

2

2σ2

)
,

where we define

ai = xT
i β and σ = ∥L−Tβ∥. (80)

Substituting the expression for Hermite polynomial (see Section 3) into the integral I gives

I =
1

|detL|
√
2π

∫
Sd−1

1

σd+2

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1

(
t− ai
σ

)
e−

(t−ai)
2

2σ2

∣∣∣∣∣ dt dβ.
To simplify the inner integral, we can perform the following change of variable centered at a1 =
xT
1β

y =
t− a1
σ

⇒ t = σy + a1 ⇒ dt = σ dy. (81)

We can express all yi in terms of y as follows

yi =
t− ai
σ

=
σy + a1 − ai

σ
= y +∆i, (82)

where we define

∆i =
a1 − ai

σ
=

xT
1β − xT

i β

∥L−Tβ∥
for i = 2, 3, . . . , k, (83)
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and ∆1 = 0.
With this change of variable into the inner integral we have the stated final form

I =
1

|detL|
√
2π

∫
Sd−1

1

σd+1

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy︸ ︷︷ ︸
define Iinner

dβ (84)

Iinner =

∫
R

∣∣∣∣∣
k∑

i=1

αiHd+1 (y +∆i) e
− (y+∆i)

2

2

∣∣∣∣∣ dy. (85)

Appendix C. A Useful Property of Hermite Polynomials

In this Appendix, we provide the proof of Lemma 6.
Proof Since Hd+1(y) is a polynomial of degree d + 1, there exists a constant C > 0 (depending
only on d) such that ∣∣∣Hd+1(y)

∣∣∣ ≤ C (1 + |y|)d+1 for all y ∈ R. (86)

Hence, for any δ > 0 and any integer j ≥ 2 we have∣∣∣Hd+1

(
jδ
)∣∣∣ e− (jδ)2

2 ≤ C (1 + jδ)d+1 e−
(jδ)2

2 . (87)

Now, we define

S(δ) :=
∞∑
j=2

(1 + jδ)d+1 e−
(jδ)2

2 . (88)

Note that we we can upper bound as follows

∞∑
j=2

∣∣∣Hd+1

(
jδ
)∣∣∣ e− (jδ)2

2 ≤ C S(δ). (89)

For each fixed j ≥ 2, notice that (1+jδ)d+1 e−
(jδ)2

2 decays exponentially in j (since the exponential

term e−
(jδ)2

2 dominates the polynomial growth of (1 + jδ)d+1). Moreover, for fixed j ≥ 2 we have

lim
δ→∞

(1 + jδ)d+1 e−
(jδ)2

2 = 0. (90)

Thus, the series S(δ) converges for every fixed δ > 0 and

lim
δ→∞

S(δ) = 0. (91)
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Hence, by the definition, there exists some δ0 > 0 such that for all δ ≥ δ0 we have

S(δ) <
ρ

4C
. (92)

It follows that for every δ ≥ δ0,

∞∑
j=2

∣∣∣Hd+1

(
jδ
)∣∣∣ e− (jδ)2

2 ≤ C · S(δ) < C · ρ

4C
=

ρ

4
. (93)

Thus for this choice of δ0 we achieve the statement of the lemma.

Appendix D. A Sequence With Diverging ℓ1-Norm and Converging RKHS Norm

In this Appendix, we provide the proof of Example 2.

Lemma 8 Let αn = 1
n and suppose that the points xn ∈ Rd satisfy

∥xi − xj∥ ≥ |i− j|δ for some δ > 0 and for all i, j ∈ N. (94)

Then the function

f(x) =
∞∑
n=1

1

n
k(x,xn), (95)

with the Gaussian kernel

k(x,y) = exp
(
−∥x− y∥2

2σ2

)
, (96)

has finite RKHS norm

∥f∥2H =
∞∑

i,j=1

1

ij
k(xi,xj) < ∞, (97)

even though

∥α∥ℓ1 =

∞∑
n=1

1

n
= ∞. (98)

Proof We begin by splitting the double series defining the RKHS norm into diagonal and off–
diagonal parts:

∥f∥2H =
∞∑
i=1

1

i2
k(xi,xi) +

∑
i ̸=j

1

ij
k(xi,xj). (99)
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Since k(x,x) = 1 for all x ∈ Rd, the diagonal contribution is

Sdiag =
∞∑
i=1

1

i2
, (100)

which converges (indeed,
∑∞

i=1
1
i2

= π2/6).
For the off–diagonal part, define

Soff =
∑
i ̸=j

1

ij
k(xi,xj). (101)

By symmetry and non-negativity of k(xi,xj), we can write

Soff = 2
∑
i>j

1

ij
k(xi,xj). (102)

For i > j, the separation condition implies

∥xi − xj∥ ≥ (i− j)δ, (103)

so that

k(xi,xj) = exp
(
−∥xi − xj∥2

2σ2

)
≤ exp

(
−((i− j)δ)2

2σ2

)
. (104)

Setting

k = i− j (k ≥ 1) (105)

and writing i = j + k, we obtain

Soff ≤ 2

∞∑
k=1

exp
(
−(kδ)2

2σ2

) ∞∑
j=1

1

j(j + k)
. (106)

We now analyze the inner sum. Using partial fractions,

1

j(j + k)
=

1

k

(1
j
− 1

j + k

)
. (107)

Thus,

∞∑
j=1

1

j(j + k)
=

1

k

∞∑
j=1

(
1

j
− 1

j + k

)
. (108)

The telescoping sum yields

Hk :=
∞∑
j=1

(
1

j
− 1

j + k

)
=

k∑
j=1

1

j
, (109)
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where Hk is also known as the kth harmonic number. Hence,

∞∑
j=1

1

j(j + k)
=

Hk

k
. (110)

It follows that

Soff ≤ 2

∞∑
k=1

exp
(
−(kδ)2

2σ2

)Hk

k
. (111)

For large k, it holds that

Hk = ln k + γ + o(1), (112)

where γ is the Euler–Mascheroni constant. Moreover, the Gaussian factor

exp
(
−(kδ)2

2σ2

)
(113)

decays exponentially in k. Therefore, the series

∞∑
k=1

exp
(
−(kδ)2

2σ2

)Hk

k
(114)

is bounded, where we note that Hk
k is bounded from above by 1 (for all k taken sufficiently large).

Combining the diagonal and off–diagonal parts, we deduce that

∥f∥2H =
∞∑
i=1

1

i2
k(xi,xi) +

∑
i ̸=j

1

ij
k(xi,xj) (115)

= Sdiag + Soff (116)

≤
∞∑
i=1

1

i2
+ 2

∞∑
k=1

exp
(
−(kδ)2

2σ2

)Hk

k
(117)

< ∞. (118)
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