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Abstract

Recent works have characterized the function-space inductive bias of infinite-width bounded-
norm single-hidden-layer neural networks as a kind of bounded-variation-type space. This novel
neural network Banach space encompasses many classical multivariate function spaces, including
certain Sobolev spaces and the spectral Barron spaces. Notably, this Banach space also includes
functions that exhibit less classical regularity, such as those that only vary in a few directions.
On bounded domains, it is well-established that the Gaussian reproducing kernel Hilbert space
(RKHS) strictly embeds into this Banach space, demonstrating a clear gap between the Gaussian
RKHS and the neural network Banach space. It turns out that when investigating these spaces on
unbounded domains, e.g., all of R?, the story is fundamentally different. We establish the following
fundamental result: Certain functions that lie in the Gaussian RKHS have infinite norm in the neural
network Banach space. This provides a nontrivial gap between kernel methods and neural networks
by exhibiting functions that kernel methods easily represent, whereas neural networks cannot.

1. Introduction

In supervised learning, we observe samples with corresponding labels, which may represent classes
or continuous values. Our primary objective is to construct a function f : R? — R based on these
observations that can accurately predict labels for new, unseen data points. Traditionally, reproduc-
ing kernel Hilbert spaces (RKHS) have provided a principled framework for this task, offering both
theoretical guarantees and practical algorithms. Their power stems from the representer theorem,
which ensures that optimal solutions can be expressed as combinations of kernel functions centered
at the training points.

However, the landscape of machine learning has evolved significantly with the emergence of
neural networks, which have demonstrated remarkable success across diverse applications over ker-
nel methods. The simplest neural architecture—the single-hidden layer network—builds upon the
concept of ridge functions, which map R? — R via the form  — o(w'x), where 0 : R — R
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is a univariate function and w € R?\ {0}. In practice, these networks combine multiple ridge

functions:
K

mHkaa(wgw—bk), (1)
k=1
where K represents the network width, v, € R and w;, € R?\ {0} are weights, and b, € R
are biases. While RKHS methods suffer from the curse of dimensionality, neural networks can
overcome it by learning effective low-dimensional representations (Ghorbani et al., 2021b; von
Luxburg and Bousquet, 2004).

A fundamental question is to compare the approximation capabilities of neural networks with
those of RKHS corresponding to different kernels. For example, Mei et al. (2016) showed that if
the target function is a single neuron, neural networks can learn efficiently using roughly dlogd
samples, whereas the corresponding RKHS requires a sample size that grows polynomially in the
dimension d (see also Yehudai and Shamir (2019); Ghorbani et al. (2019)).

Recent work (Parhi and Nowak, 2021, 2023a) has studied the Banach-space optimality of single-
hidden-layer (shallow ReLU) networks over both bounded and unbounded domains 2 C R?. There,
the authors established a representer theorem which demonstrates that solutions to data-fitting prob-
lems in these networks naturally reside in a kind of bounded variation space, referred to as the
second-order Radon bounded variation space RBV?(£2). These spaces, in turn, contain several
classical multivariate function spaces, including certain Sobolev spaces as well as certain spectral
Barron spaces (Barron, 1993). For instance, Parhi and Nowak (2023a) have shown that the Sobolev
space HF1(Q) embeds into RBV?(£2) for any bounded Lipschitz domain Q C R?. Moreover, on
any bounded Lipschitz domain © C R, the Gaussian reproducing kernel Hilbert space HGa“SS(Q)
is known to embed into the Sobolev space H*(2) for all s > 0 (see Corollary 4.36 of Steinwart and
Christmann (2008)). This observation appears to highlight limitations of Gaussian kernel machines
when compared to neural networks on bounded domains. Consequently, a natural question arises.

Are Gaussian kernel machines restrictive in approximating general functions?
Conversely, one may also ask the following question.
To what extent can we approximate functions using shallow neural networks?

To that end, Ghorbani et al. (2021a) demonstrated that the gap between neural network approxi-
mations and kernel methods can be narrowed when the intrinsic dimensionality of the target function
is well captured by the covariates of the data. In this paper, we take a different perspective: While
the Gaussian RKHS may seem rather limited in a bounded domain, we show that on unbounded
domains, in particular, on R< with fixed dimension d, there exist functions in HGa“SS(Rd) with
unbounded RBV?(R?)-norm.

The key idea behind our analysis is that, in the regime of kernel machines with infinite centers
on RY, there exist functions of the form f = >"2°, a;k(x;,-) with bounded RKHS norm, but
the infinite sequence {«;} has an unbounded ¢1-norm (see Example 2 in Section 3). This fact
can be exploited to design a sequence of functions {f,,} whose RBV?(R?)-norm is diverging as
n — oo (see Theorem 7 in Section 5). An important step in this study is we compute an explicit
form for RBV?(R?)-norm of a Gaussian kernel machine, and further simplify the form using well-
known Hermite polynomials. This form provides an interpretable characterization of these kernel
machines, which is of independent interest for future studies.
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2. Related Work

Approximability with Kernel Methods Bach (2017) studied various classes of single-/multi-
index models with low intrinsic dimension and bounded RBV?(R?)-norm. In contrast, Ghorbani
et al. (2019) showed that if the covariates have the same dimension as the low intrinsic dimension
of the target function, kernel and neural network approximations can be competitive. Empirically,
some works show that the curse of dimensionality with kernel methods can be handled with an ap-
propriate choice of dataset-specific kernels (Arora et al., 2019; Novak et al., 2018; Shankar et al.,
2020) or mirroring neural network training dynamics closely to kernel methods (Mei et al., 2018;
Sirignano and Spiliopoulos, 2020; Rotskoff and Vanden-Eijnden, 2022; Chizat and Bach, 2018).
Furthermore, Petrini et al. (2023) showed that compared to a network that learns sparse represen-
tations while the target function is constant or smooth along certain directions of the input space,
lazy training (via random feature kernel or the NTK) yields better performance. But a wide body
of work has also shown a gap in approximation with neural networks capturing a richer and more
nuanced class of functions compared to kernel methods (see (Allen-Zhu and Li, 2019; Mei et al.,
2018; Yehudai and Shamir, 2019; Ghorbani et al., 2019)). In our work, we show that while Gaus-
sian RKHS is embedded within neural networks in bounded domains, in the unbounded regime
there exists a non-trivial gap between HG2Us$(R9) and RBV?(R?).

Function Spaces of Shallow Networks The function space RBV?(€) naturally characterizes the
function approximation and representation capabilities of shallow ReLU neural networks (Ongie
et al., 2020). Parhi and Nowak (2021) established a representer theorem, showing that solutions
to variational problems over RBV?(Q) correspond to single-hidden layer ReLU networks with
weight decay regularization. Unlike RKHSs RBV?() can efficiently represent functions with
a low-dimensional structure. Moreover, neural networks trained with weight decay achieve near-
minimax optimal estimation rates for functions in RBV?(€2), while kernel methods provably cannot
(Parhi and Nowak, 2023a). This suggests that on bounded domains, RKHSs are quite restrictive,
while RBV?(Q) provides a more expressive framework. For further details see (Ongie et al., 2020;
Parhi and Nowak, 2021, 2022, 2023a,b; Bartolucci et al., 2023; Parhi and Unser, 2025)

Embeddings of RKHSs and RBV?(f2) For any bounded Lipshitz domain Q@ C RY, it is well-
known that the Sobolev space H*({2) is (equivalent to) an RKHS if and only if s > d/2. For
example, the Laplace and Matérn kernels are associated with Sobolev RKHSs (see, e.g., Kanagawa
et al., 2018, Example 2.6). In contrast, Zhou (2003) and Steinwart and Christmann (cf., 2008,
Corollary 4.36) showed that the Gaussian RKHS H%5(Q) is contained in HE(Q) C H*(Q)
for all s > 0. Recent work has further demonstrated that the RKHSs of typical neural tangent
kernel (NTK) and neural network Gaussian process (NNGP) kernels for the ReLLU activation func-
tion are equivalent to the Sobolev spaces H (4t1)/2(S%) and H(4+3)/2(S%), respectively (Bietti and
Bach, 2021; Chen and Xu, 2021). Steinwart et al. (2009) has shown that an optimal learning rates
in Sobolev RKHSs can be achieved by cross-validating the regularization parameter. On another
front, embedding properties relating Sobolev spaces and the second-order Radond-domain bounded
variation space has been explored. For example, Ongie et al. (2020) showed that W+ (L (R?))
embeds in RBV?(R?). More recently, Mao et al. (2024) established a sharp bound by proving that
W*(L,(Q)) with s > 2+ (d+1)/2 for p > 2 embeds in RBV?(Q) for bounded domains Q C R%.



KUMAR PARHI BELKIN

3. Problem Setup and Preliminaries

3.1. Gaussian Reproducing Kernel Hilbert Space

We begin by defining a reproducing kernel Hilbert space (RKHS) associated with a Gaussian kernel
on an infinite domain. For a given positive definite Mahalanobis matrix M € Sym (R*4) we
define the Gaussian kernel kpp : R? x R4 — R as

2
k(. y) = exp <—”m2j§”M> : @)

where o > 0 is a fixed scale parameter and the Mahalanobis distance is defined as
Iz -yl = (x —y)"M(z — y). 3)

The corresponding RKHS 7 is defined as the closure' of the linear span of kernel functions:

H:—Cl({f:X—HR

where the (squared) RKHS norm || - ||, of a kernel machine f € H is defined as ||f||3, =
>ij ik (i, ;). Alternately, we can write 1f13, = a"Ka where K = (km(zi, x)))i,;
is an n X n matrix.

neN,f(-):Za,--kM(wi,~), T; ERd}> , (4)
=1

3.2. Separated Sets and Function Spaces

For our analysis, we introduce two key definitions of separated sets that play a crucial role in our
theoretical development.

Definition 1 ((3, §)-separated set) For any given scalar § > 0 and a vector 3 € R%, a (3,9)-
separated subset of size n € N is defined as

Ca(8,0) = {{@1,. . @} | Vi g, |87 — BTy = 5} )
This could be further generalized to the notion

Definition 2 ((3, 6, n)-separated set) For any given scalars 6,1 > 0 and a vector 3 € R% a
(B, 0,n)-separated subset of size n € N is defined as

CalB,0,m) i= {{@r, .. @a} | Vij B € RY s 878" = n)1BI|||8]], 18 s — BTay| = 5}
(©6)

Example 1 Let 8 = (1,0,...,0). Forall ng > n, pick 3 = (no,+/1—12,0,...,0) so that
18] =1 and B'B = no > n. Now define

z;=(G—-1)068, i=1,...n 7
For i # j, we have
8 s — 8| = (i = )18 =i —j| 6 > 0. ®)
Hence, {x1,...,x,} isin (B3, 0,n)-separated subset of size n.

1. With respect to the norm topology on H.
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Definition 3 (Unbounded Combinations) For a kernel machine f € H with representation f =
o2, aik(xg, -), we say the coefficient vector o = ()52, is unbounded with respect to f if
lrlley = 22524 |ai] = oo

Example 2 Consider a kernel machine f € H corresponding to the combination o = (a,,) defined
by a, = %for eachn € N and a sequence of centers (x,,) C R such that for all i, j, ||z; — x| >
|i — j|0 for some fixed scalar 6 > 0. For this construction, Gaussian RKHS norm a'Ka =
Doigy 2o qiajk(Ti, @) < 0o, but ||ally, is unbounded.

We provide the proof of the statement in the example above in Appendix D.

3.3. Probabilist’s Hermite Polynomials

Probabilist’s Hermite polynomials (Szegd, 1975), denoted by He4(2) : R — R, are defined by the
generating function

2 o0 4d
exp (zt - 5) = Z Hed(z)a, )
d=0
and they are orthogonal with respect to the standard normal density
00 1 22
He,(z)Hey (2 ex (——)dz:d!é 2 10
/_OO d()d()mp 5 dd (10)

where d44 is the Kronecker delta. We use the notation H, to denote the polynomial unless stated
otherwise.

3.4. Radon Transform and the Second-Order Radon-Domain Bounded Variation Space

Radon Transform For a function f : R? — R, its Radon transform R{ f} is defined by

R{F)B.0 = [ (@) ds(@), (an
{xeRe:BTx=t}
where u € S%~!,t € R, and ds(z) is the (d — 1)-dimensional Lebesgue measure on the hyperplane

Radon Bounded Variation Space We define the second-order Radon bounded variation space
RBVZ(R?) as:

RTVZ(f) < oo,
RBV2(R?Y) = { f: R? — R is measurable : esssup | f£(2)|(1 + |z]) "t < oo (- (12)
zERd
where the second-order Radon total variation norm RTV? (f) is a seminorm defined by
RIVA(f) = callF A R | pagsa-1 ). (13)
Here, A9~! = (—8?)%, ;' = 2(2m)? ! is a dimension-dependent constant, and || - | M(se-1xm)

denotes the total variation norm in the sense of measures supported on S?~! x R. Note that all oper-
ators must be understood in the distributional sense (see Parhi and Nowak (2021); Parhi and Unser
(2024) for more details). The seminorm in Eq. (13) exactly coincides with the representational cost
of a function realized as a single-hidden-layer bounded-norm infinite-width network and coincides
with the R-norm introduced by Ongie et al. (2020).
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4. RTV? of a Kernel Machine

In this section, we study the RTV? of kernel machines in the RKHS #H. We show that one can
write an explicit computable form for the case when the input dimension d is odd. Consider the
underlying matrix M > 0 for the Gaussian kernel kp has the following Cholesky decomposition

M=LL". (14)

Since M is full rank and is in Sym (R%*?) this decomposition is unique. With this we state the
following result on RTV?(f) of a kernel machine f € H(IRY) with the proof in Appendix A.

Theorem 4 Assume that the input dimension d is odd. For a kernel machine f € H(R?) of the
form

k
FO) =" cuikn(ms, ), (15)
=1

the RTV? of f is given by

1 1 1

RIV(f) = ——— T Al
)= aet Ll Var Joo s TE78] e

k
o+l (t _ xTﬁ)Z
| == — =) ) dedg,
;a <8td+1 exp < 2T B
16)

where we have used the decomposition M = LTL. Furthermore, this can be extended to the case
when f has a representation with infinite kernel functions by taking limits.

Proof Outline The proof proceeds in three main steps: First, we leverage the factorization M =
LTL to express the Gaussian kernel for a single center x as

B 1 |L(x — 330)\2
9(@) = G exp(— ). (17)
Next, we compute its Fourier transform using the change-of-variables formula to obtain
1 LfT 2
g(w) = exp(—imgw) (et L) exp(—‘2w‘>. (18)

Finally, we apply the Fourier slice theorem (Ramm and Katsevich, 1996) to connect the one-
dimensional Fourier transform of R{g}(3,t) (with respect to t) with d-variate Fourier transform
evaluated on one slice: §(w(3). By inverting this transform, we derive the explicit expression for
R{g}(B,t). For odd dimensions d, the second-order Radon total variation of smooth functions is
characterized by the L;-norm of the (d + 1)th t-derivative of R{g}(3,t) (cf., Ongie et al., 2020;
Parhi and Nowak, 2021). The result then readily extends to any finite kernel machine

k
f()= Z aikn (i, -) (19)
i=1
through the linearity of both the Fourier and Radon transforms. |
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4.1. RTV? as an Expression of Hermite Polynomials

In Section 3, we discussed Hermite polynomials (probabilist’s). In the following, we show how
Theorem 4 can be rewritten in terms of Hermite polynomials. In the next section, we study certain
useful property of this expression to show the construction of a diverging RT'V? sequence of kernel
machines.

First, consider the the case of a ¢ € H defined on one center 2y € R?. Using Theorem 4 we
can write the RTV2-norm of the kernel machine g for one center x as

8d+1 (t _ iBoTﬁ)2
o TP\ Ty T

First, consider the inner integral in RTV?(g) and denote it as
o4+t (t — xB)?
= /R ' <8td+1 exp < By >> ‘ dt, (21)
where we use o = HL_TﬁH.

Now, denote i := xo3. Then, we note that the (d+ 1)-th derivative of exp (— %) is related

1 1

RTV?
( ) \det L| \/271'

dtdB. (20)

loa

to the (d + 1)-th Hermite polynomial H,, 1 as follows:
6d ! (t M)Q d+1 __—(d+ t H (t M)Q
tdlexp( 552 >—( 1) o Hd+1< >exp< 52 ) (22)

Now, let u = tTT“ Thus, du = 1d¢t. Substituting this transformation to I(3) gives

2

1(8) = Hit1 o (t=p)? » :/ (—1) e @, (e |odu (23)
R otd+1 202 R
u2
= a_d/ ‘Hd+1(u)e_2 du. (24)
R
We can rewrite I(3) as
w2
I(B) =01 / Hy(uw)e™ 7 |du = o790y, (25)
R

where Cy := fR Hgiq(u)e” 2 | du. In Section 5, we bound this quantity to achieve certain decay

of an infinite sum.
Replacing the computation in Eq. (24) to Eq. (20) gives
Cy 1 1
|det L] /27 Jea—1 IL-Tg|*™

RTV?(g) = dg. (26)

Thus, this shows that the expression of RTV?(g) in Theorem 4 can be simplified in terms of Her-
mite polynomials.
In the following we extend this for k£ > 1 with the proof deferred to Appendix B.
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Figure 1: Illustration of an (3, §, n)-separated set and a sequence (1, T2, 3, x4) that satisfy the

requirements of the definition. The distances 1, d12, do3 are at least § apart.

Lemma 5 For a kernel machine f € H in the space of Gaussian RKHS. If f has the following

representation
k
FO) = aikm(;, )
i=1
for a center set {x1,x2,...,xL}. Then, we can write
1 Linner(B)
RTVQ —_ inner d ,
(f) | det L|v/27 Jga-1 od+l P
k 2
_ (y+4ay)
Tinner(B) := / Z a;iHgp1 (y+Ai)e 2 dy,
Rii=1
where o = ||L~ 3| and
T T
x, B—x; O .
A= 0 _S0F fori=2.3,.. .k,
B[ Ve

and A1 = 0.

5. A Sequence of Kernel Machines with Diverging R TV?>

27

(28)

(29)

(30)

In this section, we construct a sequence of kernel machines { fn € H(Rd)} such that their RTV?
diverges. First, we state some useful assumptions on the probabilist’s Hermite polynomial which

are easy to verify to hold in general (but surely in odd dimension d).

Assumption 1 (§-peak) Fix a dimension d. For a given Hermite polynomial Hy 1, we call an

interval [—6, 0] a region of 6-peak if:

2
v
1. %<Oforally>5

2
P _Y_
2. YMalV)e 2 > 0 forall y < 0
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2
Due to exponential decay of the product Hy (y)e_yT, for any odd dimension d note that

2
Y

OHgy1(y)e” =

_ a2
oy = HinW) —yHaa@)e ", (31)
where —yHy.1(y) is a polynomial with odd dimension with negative highest term and this implies

2
there exists a J-peak. Now, we state a trivial observation on the absolute integral of Hy1 (y) e T,

Assumption 2 (e-safe) We say a constant € > 0 is e-safe if

2
Hyi1(y) e 7| dy > 0. (32)

Since Hg441 is non-zero polynomial this holds trivially for any € > 0. Furthermore, the integral is
increasing with the size of an e-interval. With this, we state a useful result on the convergence of a

2
series of evaluations of Hg1 (y) e~ 2 on distinct points y € R. The proof appears in Appendix C.
Lemma 6 Let d > 0 be fixed and let Hyy1(y) denote the Hermite polynomial of degree d + 1.

Then for any constant p > 0, there exists a constant 69 > 0 (depending only on d) such that for
every § > &g we have

> N G2 p
| Haa (o) e < 2. (33)
j=2

5.1. Construction of a Diverging Sequence

In Section 3, we defined the notions of (3, d, n)-separated sets of size n € N. Let (1, 2, ..., &)
be a sequence in this set. Intuitively, any two centers in the sequence are at least § apart when
projected onto any direction 3’ such that 373" > ||3|| ||3'|| n (see Fig. 1 for an illustration). Now,
note that in Lemma 5, we provided an alternate representation of the RTVz( f) of a function as
shown in Theorem 4, specifically the inner integral for each 3 € S¢~! has the form:

Jinner(B) = /]R

where each A; = cc-lrﬁ — :B;r,B (ignoring the normalization). If the projections a:;rﬁ are far apart on
2

k _(wtay?
Y aiHap (y+A)e 2 |dy, (34)

i=1

the real line R, noting the absolute decay in the values of Hy.1 (y) e~ 'T outside the region of -
peak as asserted by Assumption 1, we can quantify and control contributions of terms corresponding
to j # ¢ in the inner integral.

Now, the property holds over a non-trivial cone C(3) := { B esi11873 > 77} with non-
zero volume. Now, note in Eq. (28), which involves the following integral

Iinner(ﬁ)
L et an a

is non-trivially positive. Thus, we show along any direction 3 in the cone, ljnner diverges as k grows
if the kernel machine f is defined for a sequence of centers from the (3, 0, n)-separated set.
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Now, we state the main theorem of the work. For ease of analysis we assume that the largest
eigenvalue of L~ is upper bounded by 1 which can be easily replaced with appropriate rescaling
and choice of the parameters in the statement.

Theorem 7 (Diverging RTV?) Consider the Gaussian RKHS H(R?) as defined in Eq. (4). As-
sume € € (0,1/2] be a safe constant (see Assumption 2). Define

dy. (36)

Fix a unit vector 3 € R%, scalars n > @, and § = 3max{e, do(p), 8’} where do(p) is chosen as

per Lemma 6, and §'(d) as per Assumption 1. Let Xy = {x1, T2, ...} C R? be an infinite sequence
such that any subsequence 'y, = {x1, @2, ..., x,} is in the (3,0, n)-separated set of size n. Define
a function f € H on X that has a representation with an f-unbounded combination oy. Then,

RTV2({fa}) = oo, (37)
as n — oQ.

Proof First, we rewrite Eq. (28) for the RTV? of the function f;, as follows

k
1 1 (y+2,)2
RTVA(fi) = / / a;H, +A))e 2z |dydB, 38
(fk) ]detLh/ﬂ d—1 O'd+1 R ; 1 LLd4+-1 (y Z) Yy ﬂ ( )
with the inner integral
b (wt+a,)?
Tinner(B) = /  aiHa(y+A) ez | dy, (39)
Rii=1
where
T T
a—a xB—z;0 .
A1 =0, A; = = ! fori=2,3,...,k. (40)
’ o IL=T8ll
First, define the cone I wrt 3 and 7 as stated in the theorem statement, i.e.,
Ki={@ s |8TB= 0} 1)

Note that the volume vol(KC) > 0 implying that

1 1
|, s> [ s = )

Note that M = LTL. We assume that the M is symmetric and PSD, implying that singular values
of L are exactly the square root of the eigenvalues of M, i.e.,

oi(L) = V[Xi(M)]. (43)

10
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But, since L is invertible implying the singular values if L' are inverses to singular values of L,
ie, o (L71) = U%L). Thus, we can rewrite Eq. (42) as

1
() = /IC o (L 1) 4+ ap
min L dt1 d
> /’C omin(L) dB

- / Amin (M) T dB = Ain (M) “Fv0l(K) > 0. (44)
K

Now, we will show for any 3’ € K, there is a non-trivial lower bound on Iinner(3’). Note that by
definition, T';, is in the (3', §)-separated set.
Hence, for all¢,7 = 2,3, ...
1A — Aj| > 6. (45)
Define the neighborhoods { N;} for the safe constant e as follows

N; = [_Az —e,—A; + 6] . 46)

Now, consider the integral on the neighborhood N;:

k 2
_ (y+4y)
/ ZO@ Hip (y + A@) e 2 dy
Ni|i=1
_(wtay? k _ (+a,)?
z/ Qi Hypr (y+Ai) e 2 dy/ Y ajHap(y+4)) e 2 | dy. (47)
g b |i=10#

=:0;

The second line follows from the triangle inequality. Now, change of variable simplifies the first
equation as

s

In the last equation, we used the definition of p.

Yl
2

Ha1 (y) e” 7| dy = |ailp. (48)

(a3
aiHop1 (y+A) e 2 | dy> |04i’/[ ]

Now, summing over each i = 1,2, ...k, we get

(y+57)3
2

k
> i Hyr (y+A) e
i—1

1

k
Toner > S /
i=1 7 Ni

k k
dy > pz || — Zei- (49)
i=1 i=1

Now, we will show how to bound the sum Zle 0;.

11
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Bounding 0;: First note that, we can bound each 6; as follows

k 2
(y+45)
0;, = / E aj Hop1 (y+ Aj) e” 7 dy
N;

| j=1,57
(y+A )2
Z / 0 Hasy (y + A)) € dy (50)
Jj= 171#
(—A+y+a))?
S [ e Han CAcry A T ay 5
j= LJ#Z [~ed]
_ (= J\é)
< Z \aj\ (Ji —j16) e dy (52)
J=1j#i
b (li—418)2
<2 > oyl |Hap (i = j16)) e 2
j=1,j#i
k (li—418)2
< D ol Hapa (i = 1o)== (53)
=1,

Eq. (50) is a straight-forward application of triangle inequality. In Eq. (51), we simplify Eq. (50)
via change of variable. In Eq. (52), we use the assumption of J-peak. To simplify —A; +y+ A for
a choice of y € [—e, €], we assume that indices of the projections A; for i = 1,2, ... are arranged
in ascending order in their values on the real line. Since each consecutive projections are at least
d apart, we can bound | — A; +y + A;| > (|i — j| — 1/3)d. Since Hermite polynomials in even
dimension, i.e. d + 1, are even

(—8;+y+a,)?

Hd+1 (—Ai+y+Aj) e 2

((li—4]-2/3)6)2

< ‘Hdﬂ (i — | - 2/3)8) e S L s

For simplification, we have omitted the —(2/3)0 additive term in the equation above. Finally,
Eq. (53) follows as € < 1/2.

Summing overeachi =1,...,k
y+A )2
Zek—z/ > g Han 8y 5 gy
Ni | j=1,j#i
_ (i=jl9)* J\J)
<Z Z jajl [Has1 (i = j16)|
i=1 j=1,j#i
(J5)
<2 ZIHd+1 (j0)] Z\azl (55)
7=1

Using Lemma 6, we can rewrite Eq. (49) as

k k
. (i8)?
IinnerZPZ|ai|_2 Z‘Hd—&-l (40)] e
i=1 =2

k

k
> lail = £ Jal. (56)
=1 =1
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Now, note that using Eq. (42) and Eq. (44)

k
1 1 _wtay?
RTV(fy) > |detL\/ﬂ/;co‘d“/R Zain—H (y+A))e 2z |dyds
=1
k
1 1 p
> - i | d
> el %/Kadﬂ <2i21a |> s
> (— L M) oK) pzk]a-y (57)
~ \JdetLjv2r ™" 240 )

Now, in the limiting case

k
. 1 (d+1) . p
lim RTV2(fi) > [ ————=Amin(M | lim (53 Ja;
et V(f’“)—<|detL|m (M) V°(’C)>k5§o (2 e ')

=1

(1 A (M)<d§1>voI(IC)> 2ol — (58)
= min = || 0.

| det L|v2r 2 1%

Hence the claim of the theorem has been proven. |

6. Conclusion

In this work, we showed that if we allow unbounded domains, there exist functions that cannot
be represented within RBV?(IRY), but can be represented within the Gaussian RKHS. This anal-
ysis reveals a nontrivial gap between kernel methods and neural networks by exhibiting functions
that kernel methods can represent, whereas neural networks cannot. On that note, this observation
motivates further investigation of what this gap entails in a learning setting. This observation also
motivates investigating if a similar gap exists between kernel methods and deep neural networks.
We leave the details to future work.
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Appendix A. RTV? for centers size k > 1

In this Appendix, we provide the proof of Theorem 4. First, we provide the proof for one center and
then extend it to multi-center settings.
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Proof Let

1 x — 0|3
9(@) = (i P <_H20HM> '

Also, define the 0 mean identity covariance Gaussian

1 x|
90(@) = {57z X <_H 2H ) '

If we can write M = LTL, then we have that

2 2
[ = olpg = [[L(z — z0)[7

in which case

1 |La — Laol?
g(m)_(zw)d/f}{p I T

We have the Fourier transform
2
. w
go(w) = exp (—H2H> :

(59)

(60)

(61)

(62)

(63)

We have the equality g(x) = go(La — La). Using the change of variables formula for the Fourier

transform, we have

1
§(w) = exp (~i(La) 'L Tw) T T
. _ 1 L Tw 2
exp (—1ngTL Tw) et L exp (—H2H>

(e
= exp (—IZL'O w> m exp —# .

The Fourier slice theorem (Ramm and Katsevich, 1996) says that

FUR{FHB, ) Hw) = f(wp).

If we evaluate g at w = w3 in the Eq. (66), we find

-T w 2
9(wB) = exp (—moT(wﬁ)) |detL| exp <—HL(2B)H>

2||I1,-T 2
= exp (—i(mgﬁ)w) |de1L| exp (_w| | 5 &l ) .
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(66)

(67)
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The 1D inverse Fourier transform of this is the Radon transform of g, i.e.,

11 1 (t—=z(8)*
RAGHB) = T Vom HL—TBHZGXP< QHL_TﬁHQ) (70)

If d is odd, then the second-order Radon domain total variation is the L;-norm of (d+ 1) derivatives
in ¢ of this quantity (see Equation (28) in Parhi and Nowak (2021)). That is

8d+1 (t _ a:T,B)2
RTV?(g) = / / exp | ———22 dtdg (71)
|det L| v2r Jsi—1 /”L TBH otd+1 2|L-T8|?
1 1 od+1 (t — xlB)?
exp T—— dtdg. (72)
" Jdet L] y2r Jsar L TBH <8td+1 ( 2|IL-T8|?
This gives the stated expression on RTVZ(f) for one center. |
A.1. Multi-Center Computation
For a kernel machine with k£ > 1 centers, we can rewrite g as
k 2
B 1 ||ILz — La;||

2
Denote by g;(x) := W exp (—M) for each center x; € D.

Now, the Fourier transform of g can be written for the extended case, noting the linearity of the
transform,

k
g(w) =D gi(w). (74)
i=1
This implies that
k -T 2
1 L]
~ . . T
g(w) = ;exp (—1:z:i w) et exp (—2 . (75)

Now, computing the inverse Fourier transform of § wrt w gives

L &1 1 (t—2]B)

As before the RTV? of g, i.e. the second-order Radon domain total variation for odd values of d is
the L;-norm of (d + 1) derivatives in ¢ of this quantity. Thus,

d+1 (t _ :U;rﬁ)Z
< o+t P (‘2 \rL—Tm\2>>| s

(77)

RTV?(g) =

|detL| Vor /Sd 1 H
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This expression can be extended to the case of kernel machines with infinite centers by taking
limits. In particular, it is guaranteed to be finite for the case when the ¢; norm of the coefficients «
is finite since

7

Ha+1 (t — ﬂfiTﬁ)Q
o (g (-tgy) ) < S -

_ (t—=]B)*

7 ) is bounded by a universal constant
278

.. . d+1
where it is straightforward to show that BatTJ;l exp (

C' > 0 for all choices of x;.

Appendix B. Change of Variables For Multiple Centers

In this Appendix, we provide the proof of Lemma 5.
Proof Previously, we computed the RTV? of a general kernel machine as

1 1 1 k gd+1 t— 2T3)2
RIV6) = i v o To1 L 2 <atd+leXp <‘; ||L—;§\)\2>> | s
(719)
Now, we can rewrite the (d + 1)-th derivative of the involved exponential as follows
g o0 (g ) = oo (2 o (U5,
where we define
ai=x]B and o= |L7T4]. (80)

Substituting the expression for Hermite polynomial (see Section 3) into the integral I gives

_ (t—a;)?

, 1 1 / Zk: o (t—a =
= — —_— Qi [ o
|det L| /27'1' Sd-1 od+2 . gt i4dd+1 o

dt dp.

To simplify the inner integral, we can perform the following change of variable centered at a; =
T
x; 3

t—a1
y:

= t=oy+a = dt=ody. (81)
(o

We can express all y; in terms of y as follows

t— a; oy +ay — a;
P e Sl N (82)
o g

where we define

ar — @i _ z{B -z
o IL=Ta

A= fori =2,3,...,k, (83)
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and A; = 0.
With this change of variable into the inner integral we have the stated final form
1 1 (y+2;)>
‘detL’\/%/gdl od+l / ; iHat1 (y i)e” y dB (84)
define finner
i (y+ )2
Tinner = / Z aiHog (y+ Aj) e dy. (85)
R|i=1

Appendix C. A Useful Property of Hermite Polynomials

In this Appendix, we provide the proof of Lemma 6.
Proof Since H;,1(y) is a polynomial of degree d + 1, there exists a constant C' > 0 (depending
only on d) such that

’Hd+1(y)‘ <O+ forally € R. (86)

Hence, for any 6 > 0 and any integer 5 > 2 we have

j9)? G9)°
[Haa (56) | e < (14 oyt e 87)
Now, we define
= G2
=Y (14j6)" e 2 (88)
Jj=2
Note that we we can upper bound as follows
Z]Hdﬂ jo)| e (6): (89)

For each fixed j > 2, notice that (1+56)%+! e~ “2~ decays exponentially in j (since the exponential
9?2 6)2

term e dominates the polynomial growth of (1 4 56)%*!). Moreover, for fixed j > 2 we have
. , (39)?
lim (1 + j9) 2 =0. (90)
d—00
Thus, the series S(&) converges for every fixed § > 0 and
lim S(0) = 0. 1)

d—00
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Hence, by the definition, there exists some dg > 0 such that for all § > dg we have

p
1) —. 2
S(6) < 10 92)
It follows that for every § > 4,
[e'e) (5)2
S| HaaGo)| e < sy <o L =2 93)
= 4C 4
Thus for this choice of §y we achieve the statement of the lemma. |

Appendix D. A Sequence With Diverging /,-Norm and Converging RKHS Norm

In this Appendix, we provide the proof of Example 2.

Lemma8 Let o, = % and suppose that the points ,, € R? satisfy

|lx; —xj|| > |i — 4|6 forsomed > 0and foralli,j € N. (94)
Then the function
1
fl@) =" —k(z,2,), 95)
n=1 n
with the Gaussian kernel
a2
k(w7y) = exp<_M)a (96)
202
has finite RKHS norm
= 1
1115 = D < k(i @;) < oo, 97)
=1
even though
1
lalle, = Zl ~ =00, 98)
n—=

Proof We begin by splitting the double series defining the RKHS norm into diagonal and off-
diagonal parts:

1 1
1£113 :Zﬁk(xiami)+27jk(miamj)' 99)
i=1 oy
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Since k(x,x) = 1 for all z € R?, the diagonal contribution is

00

1

Sdiag = E Z'727
=1

which converges (indeed, >7°, 5 = 72/6).
For the off—diagonal part, define

1
Soff = Z E ki(:l!l, l’j).

i#]

By symmetry and non-negativity of k(x;, ), we can write

1
Soff =2 Z E k(.’l?i, CCj).

For ¢ > j, the separation condition implies

1>7

i — ;]| > (i — j)d,

so that
2
T — T
k(x;, x;) = exp(—”l202]|) <ex
Setting
k=i—j (k>1)

and writing 7 = j + k, we obtain

0o 9. 00
Sotf < 2 ZeXP<— (1262 ) Z
k=1 '

p(-

((i —4)0)?

202

We now analyze the inner sum. Using partial fractions,

Thus,

The telescoping sum yields

_
i +k)

1
253G+ R)
1/1 1
=G 73)
)
=\j ik
k
1 1 1
P~ 77) "3

22

).

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)
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where Hj. is also known as the kth harmonic number. Hence,
S
= j(G+k) k

It follows that

o0
(k8)>\ Hy
Sor <23 exp (=53 )
k=1
For large £, it holds that

Hy=Ink+~v+o(1),

where 7 is the Euler—Mascheroni constant. Moreover, the Gaussian factor

(ko )2)
exp ( 202
decays exponentially in k. Therefore, the series
i ( k§)? ) Hj,
exp| — —
P K
k=1

(110)

(111)

(112)

(113)

(114)

is bounded, where we note that 2% is bounded from above by 1 (for all k£ taken sufficiently large).

Combining the diagonal and off—dlagonal parts, we deduce that

[e.o]

1
Hf”?—l - Z k(wuml + Z - k wlamj)

=1’ i7"

= Sdiag+soff
=1 > (k6)%\ Hy,

< grrewn(-gr) T
i=1 k=1

< 0.
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